Google 的秘密- PageRank 彻底解说

作者:佚名       来源于:中国营销策划网

或是象 sitemap.html 一样变成树状的情况下,分数会集中在sitemap.html中。就算占据全体的9成也不算新奇。

从现在起能说的是,为了计算有意义的 PageRank,要尽可能地排除机械生成的链接关系。如果把链接关系看做是推荐关系的话更加容易认同了吧。

6.对 PageRank 的个人的见解

(读者)应该没有余地去怀疑象 PageRank 那样利用超级链接来决定排列次序有效手法吧。

不过,阅读了这些论文以后笔者自身也考虑了许多问题。在这里,列举几个对 PageRank 的个人见解。虽是见解,说到底就是方法论,也许会有很多错误的地方。

  • 关于 dangling page,不相反考虑的原因是什么?

只是因为考虑一定的变异概率时「偶然」会变成最简才不予考虑吗?还是有时看漏了什么吗?稍微有点不太明白。

  • 改善推移概率行列的可能性

    说起来,为了保证 PageRank 的单一意义的性质(一意),只要保证推移概率行列是最简(有向图表是强联结)就行了,没有必要所有的要素 aij 都是非零要素。事实上,像在web上浏览 Toyota 汽车网站后紧接着跳向色情网站,接着又继续跳到白宫网站浏览的怪异的人应该是不存在的吧。(请注意这里是指在随时间变化连续的形式)。因此,从实用的意义上来说,区别于改善多少的使用方便程度,应该留下对算法改良的余地。

  • 考虑「逗留概率」会怎样

根据 PageRank 的考虑方法,在一定的时间后必定顺着链接前进到其他的页面,或者突然怪异的、歪曲的跳到其他页面。但是如果对照现实的web浏览模型,也要考虑一定的逗留概率。具体地说,就是推移概率行列的对角成分中只取( 1-c)/N 的话取得过小了。在原本所有变迁概率都一定的情况下,更加进一步分析会怎样?因为对于无聊的页面(浏览者)必定会想都不想就转到另外的页面,反过来对于重要的页面却会停留较长的时间。

  • 如果考虑概率论应用的话必定会考虑其他许多问题

即使是将实现性置之度外,我们也再来试着进一步考虑这个想法。概率论中,存在着一种叫消灭概率或叫固定概率的概率。比起 PageRank 的单纯而同样考虑方法,导入这种考虑方法会得到更期望的结果,所以理所当然被大家所期待。大家都知道马尔可夫链中的分枝过程的考虑方法。这是考虑遗传基因突变时的一个模型,即,说明经过一定的时间而产生淘汰的可能性的模型。很多人认为这个考虑方法或许会被采用。那么导入带有限制的概率(禁忌概率)又会怎么样呢? 即,相当于导入通过 n 次的推移从状态 i 移动到状态 j 时,不经过状态 k 的概率。如果考虑到web浏览的性质的话,不是也能理所当然地成为假定吗?

  • 不能作为非马尔可夫过程(或者说 m次的多重马尔可夫过程)来考虑吗

所谓马尔可夫过程,就是与过去的经历无关,只从现在的状态来确定未来的概率法则的概率过程。 马尔可夫过程只依存于1步之前的过程。这个过程和没有对过去的记忆,没有依存于过去经历的要素。 PageRank 是在单纯马尔可夫过程随时间变化而固定的状态下计算时候所求得的结果。但是,人类的理性行动必须以非马尔可夫过程来表现。复杂的过程总是以一些形式和过去有着牵连。因此,不仅仅单一地分析从哪个页面连接来,而要分析沿着怎样的路径连接而来的。这样的分析才会使其有可能成为更有用的排序系统。在能抑制住计算量爆炸的范围内,试着引入非马尔可夫过程来研究说不定也很有趣。

在考虑到和看到的许许多多中,有像实际安装那样不太难的东西,也有因为只是嘴上说说而不知道怎样实际安装的东西,不管怎样,定量地评价它的效果是极为困难的。难道真的是不能实现的东西吗?

PageRank 的技术有多少

即使只是采用评价很高的 PageRank 技术,作为基本的想法也只是使用了枯竭的数值分析的手法来实现的。但是,象我在这里说明的事情,如果从专业的研究者来看完全是理所当然的事情了。只是克服规模这一点就能建立一个专业的研究领域吧。 也可以认为专业领域的内部并没有那么深的尽头。事实上,我做事,充其量只是表示了「如果是极其小规模的问题,即使是教科书的手法也能大约地得到满足计算量的结果」。

|<< << < 11 12 > >> >>|


 11/12   首页 上一页 9 10 11 12 下一页 尾页

上一篇登录搜索引擎的准备工作

下一篇搜索引擎垃圾

 【相关文章




版权声明:文章观点仅代表作者观点,作为参考,不代表本站观点。部分文章来源于网络,如果网站中图片和文字侵犯了您的版权,请联系我们及时删除处理!转载本站内容,请注明转载网址、作者和出处,避免无谓的侵权纠纷。